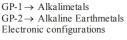
UNIT: 11 CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Important Points


Modern Periodic law: The physical and chemical properties of elements are periodic function of their atomic numbers.

The chemical properties of elements are governed by the number of electrons in the outermost orbital of atom. Elements with similar electronic a configuration posses similar properties.

- Modern Periodic Table: The two terms used to describe the periodic table are period and group.
 - ** Period: The horizontal rows of the periodic table are known as periods. Each period starts with filling up of a new quantum shell and continues till the p-orbital of the same shell is filled up. There are seven periods in the modern periodic table.
 - NUMBER OF ELEMENTS IN THE DIFFERENT PERIODS *

Period Number	Orbital's being filled up	Number of elements
1	1s	2
2	2s 2p	8
3	3s 3p	8
4	4s 3d 4p	18
5	5s 4d 5p	18
6	6s 4f 5d 6p	32
7	7s 5f 6d 7p	Incomplete

Group: The vertical columns of the periodic table are known as groups. There 18 groups; which are numbered 1to 18 according to IUPAC recommendations. Elements of same group have same electronic configuration.

	S					
1 s	1	2				
2 s	Li	Ве	Electro	Conf	igurat	ion:
3 s	Na	Mg	(n – 1)	d ¹⁻¹⁰ ns	}-2 4	5
4 s	К	Са	3d	Sc	Ti	v
5s	Rb	Sr	4d	Υ	Zr	Nb
6s	Cs	Ва	5d	La	Hf	Та
7 s	Fr	Ra	6d	Ac	Rf	Db

н										
Electro Configuration : $ (n-1)d^{1-10} ns^{J-2} \qquad \qquad \textbf{D} \qquad \qquad \text{Inner Transition Metal} $										
(n – 1)0	3	4	5	6	7	8	9	10	11	12
3d	Sc	Ti	V	Cr	Ma	Fe	Се	Ni	Cu	Zn
4d	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd
5d	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg
6d	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub

Electronic Configuration ns² np¹⁻⁶ $GP-16 \rightarrow Chalcogens$ GP-17 → Halogeus

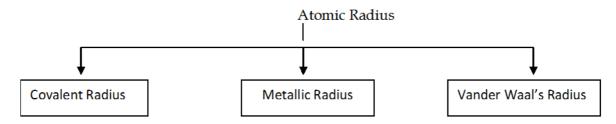
13	14	р 15	16	17	18
13	14	15	16	17	18
					-0
					Не
В	С	Z	0	F	Ne
ΑI	Si	Р	S	CI	Ar
Ga	Ge	As	Se	Br	Kr
In	Sn	Sb	Те	_	Xe
TI	Pb	Bi	Ро	At	Rn
-	Uuq	1	Uuh	-	1
	Al Ga In	Al Si Ga Ge In Sn Tl Pb	Al Si P Ga Ge As In Sn Sb Tl Pb Bi	Al Si P S Ga Ge As Se In Sn Sb Te Tl Pb Bi Po	Al Si P S Cl Ga Ge As Se Br In Sn Sb Te I Tl Pb Bi Po At

Electronic Configuration : $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$ Inner Transition							tion e	eleme						
f-section														
4f Lenthenoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
of Actinoids Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr														

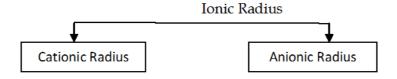
Effective Nuclear charge: In a poly electronic atom, the internal electrons repel the electrons of the outermost orbit. This result in decrease of the nuclear attraction of the electrons in the outermost orbit. This part of nuclear charge is known as effective nuclear charge.

- Z* Effective Nuclear charge
- Z Nuclear charge
- σ shielding constant

 $Z^* = Z - \sigma$


Electrons in orbital's -→ Of shells→	σ per electron in n	Orbit (n-1)	(n-2),(n-3)
s or p orbital	0.35	0.85	1
d or f orbital	0.35	1	1

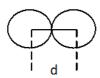
NOTE: For 1s electron, $\sigma = 0.30$ (in case of two electron system.)


For H-atom (Z=1), there is no screening, being one electron system.

$$\sigma = 0$$
 and $Z^* = Z = 1$

Element	Z	n	Value of σ for (Z- 1) electrons			Total	Z [*] =Z- σ	
			n	(n-1)	(n-2)	(n-3)		
Be	4	2	0.35	2×0.85			1.95	1.95
N	7	2	4× 0.35	2×0.85			3.10	3.90
K	19	4	0	8×0.85	8×1	2×1	16.8	2.20

ii) Ionic Radius can be expressed in two ways


1) Covalent Radius:

Covalent Radii = d/2

Covalent radius is equal to half the internuclear distance between two identical atoms joined by a single covalent bond.

2) Metallic Radius:

Metallic Radius is equal to half the shortest internuclear distance between two atoms in metallic crystal.

3) Vander waals Radius:

r = d/2

Vander waal's > metallic > Covalent

ii) Ionic Radius: Distance between the nucleus and the limit of electron cloud scattered around the nucleus.

Cationic Radii: Ionic radii of a cation As the positive charge increases the size (cationic radii) decreases.

Eg.
$$M^{3+} < M^{2+} < M^{1+} < M$$

Size "(1/amount of positive charge) or (1/effective nuclear charge)

Anionic Radii: Ionic radii of an anion. As the negative charge increases (anionic radii) increases.

Eg.
$$X^{3-} > X^{2-} > X^{1-} > X$$

Note: Anionic radii > Atomic radii > Cation Radii

iii) Size of isoelectronic species: Isoelectronic species are the species which have same nuclear of electrons but different nuclear charge

$$_{8}O^{-2} > _{9}F^{-} > _{11} Na^{+} > _{12}Mg 2^{+}$$

Size of isoelectronic species 1/No. Of protons (nuclear charge)

Unit of atomic radius and ionic radii in nm ,ºA ,pm

$$1 \text{nm} = 10^{-9} \text{m}$$

$$1^{0}A = 10^{-10}m = 10^{-8}cm$$

$$1pm = 10^{-12}m = 10^{-10}cm$$

Ionization Enthalpy: The minimum amount of energy required to remove the most loosely bound electron from an isolated gaseous atom. It is always an endothermic process. Its unit is KJ mole-1

$$A_{(g)}$$
 1st I.E $A^+ + e^ A^{2+}_{(g)}$ 2nd I.E $A^{2+} + e^-$

$$A^{2+}(g) \xrightarrow{3rd LE} A^{3+} + e^{-}$$

$$\Delta_i H_1 < \Delta_i H_2 < \Delta_i H_3$$

Electron gain enthalpy: It is the energy released, when an isolated gaseous atom gains an electron. It may be an endothermic or exothermic process.

$$X_{(g)}$$
 + e⁻ $\Delta eg H1$ $X_{(g)}$ $X_{(g)}$ + e⁻ $\Delta eg H2$ $X_{(g)}$ + e⁻ $\Delta eg H3$ $X_{(g)}$

Unit of ionic enthalpy and $\ddot{A}_{ig}\,H$: The units are ev mole-1 / KJ mole-1 / Kcal mole-1

 $1 \text{ ev mole}^{-1} = 93.6 \text{ KJ mole}^{-1}$

 $1 \text{ ev mole}^{-1} = 23.06 \text{ Kcal mole}^{-1}$

Electro negativity: It is the relative tendency of an atom to attract electron towards itself in a covalent bond. Three different scales are used in measurement (i) Pauling (ii) Mulliken (iii) Alfred - Roche, Pauling Scale is most widely used.

Factors affecting electro negativity are I.E, E.A, & shielding

- (i) I.E, E.A, & electro negativity ∞ 1/ atomic size
- (ii) I.E, E.A, & electro negativity ∞ effective nuclear charge
- (iii) I.E, E.A, & electro negativity ∞ 1/ shielding

Screening effect: The decreases in force of attractions by the electrons of shells present in between the nucleus & valence electron

Lattice Enthalpy: It is the energy evolved when one gram molecule of the crystal is formed from gaseous ions.

Valency & oxidation No:

Valency is the combining capacity of an element. Valency remain constant in a group. It is dependent on the number of valence electrons. Valency increases from 1 to 4 & then decreases from 4 to 1 (Applicable to representative elements). Valency of noble gases is zero.

Oxidation No:

Oxidation no. It is the charge possessed by an atom in a molecule. The oxidation number of s-block elements is +1 in alkali metals & +2 in alkaline metals. d-block elements exhibit variable oxidation numb. And p-block elements possess positive well as well as negative oxidation number.

Diagonal Relationship:

The similarity in properties between the first members of second period with their diagonally opposite element of third period is known as diagonal relationship. Diagonal relationship is prominent between

Reason: These elements have similar atomic radii & polarising power. ie. Charge/size ratio is similar.

Trend of different properties across the period

↓ Increases ↑ Decreases

Trends in different properties across the period

Property	Trend	Reason	Exception
1) Atomic Number effective	↑	Increases in number of protons in the nucleus of atoms	
2) Effective nuclear Charge	↑		Decreases sharply from gp 17-18
3) Atomic radii	↓	The Principal quantum remains constant Effective nuclear charge increases	In transition metal size increases from 1 st member to 2 nd but size of 2 nd & 3 rd are almost equal
4) Ionisation enthalpy	\	The nuclear force of attraction on outer most electrons increases	(i) Be > B (ii) N > O (iii)Mg>A(liv) In transition element show small variation member but I.E of 3 rd member is higher than 2 nd member
5) Electron gain enthalpy	↑	Atomic size decreases Effective nuclear charge increases. Hence nuclear force of attraction increases.	Cl > F
7) Electron negativity	increases		
8) Metallic Character	decreases	Ionisation enthalpy decrease in atomic size, electronegativity increases	
9) Non metallic character	↓ Decreases	Electron gain enthalpy decreases	
10) Reactivity of metals	↑	I.E increases,	Ag, Au, P+
11) Reducing property of metals	↑	I.E increases, Tendency to donate electrons decreases	
12) Reactivity of non- metals	↑	Electro negativity increases	
13) Oxidising property of non metals	<u> </u>	Electro negativity increases	
14) M.P & B.P of metals		Lattice enthalpy increases	
15) M.P & B.P of non- metals	↑ ↑		

Trends in different properties down the group

Property	Trend	Reason	Exception
1) Atomic Number effective	†	Increases in number of protons in the nucleus of atoms	
2) Effective nuclear Charge	†		
3) Atomic radii	†	The Principal quantum number increases Effective nuclear charge is almost constant Nuclear force of attraction decreases	In transition metal size increases from 1 st member to 2 nd but size of 2 nd & 3 rd are almost equal
4) Transition enthalpy	↓	The Principal quantum number increases The nuclear force of attraction on valence electrons decreases	(i) Tl > In (ii) Pb > Sn (iii) In transition element decreases from 1 st to 2 nd member but I.E of 3 rd member is higher than 2 nd member
5) Electron gain enthalpy	+	Atomic size increases therefore distance of valence electron from nucleus increases and nuclear force of attraction decreases	Cl > F
7) Electron negativity	+	Liksha	
8) Metallic Character	1	Increase in atomic size, transition enthalpy tendency to loose electrons	
9) Non metallic character 10)Reactivity of metals		Electron gain enthalpy decreases I,E decreases, decrease the gp	Ag, Au, P+
11) Reducing property of metals	†	I.E decreases, decrease the gp Tendency to donate electrons	(i) Li strongest (ii) Au, Hg, Tl, Bi, W, Re & Pb are less stronger than Ag, Cd, In, Sb, Mo, Tc & Sn
12) Reactivity of non- metals	+	Electro negativity decreases< gp decreases	
13) Oxidising property of non metals	+	Tendency to loose electrons	
14) M.P & B.P of metals	\	Lattice enthalpy decreses	
15) M.P & B.P of non- metals	†	Molecular solids	

Quick glance of properties across the period & down the group

	Property	Across the Period	Down the Group
(1)	Effective nuclear charge	↑	↑
(2)	Atomic Size	\downarrow	Constant
(3)	Ionisation Enthalpy	↑	\downarrow
(4)	Electron gain Enthalpy	↑	\downarrow
(5)	Electronegativity	↑	\downarrow
(6)	Metallic property	\downarrow	↑
(7)	Oxidising Agent	↑	\downarrow
(8)	Reducing Agent	\downarrow	↑
(9)	Basic character of oxides	\downarrow	↑
	& hydroxides		
(10)	Acidic character of oxides	\uparrow	\downarrow
	& hydroxides	1	
(11)	Thermal stability of	D	↑
	carbonates, nitrates etc.	ikshi	
(12)	Density	First ↑ then ↓	

Important points to remember

(1)	Liquid element	Br, Hg, Ga, Cs, Fr
(2)	Solid non metal Idodine	
(3)	Lightest Metal	Li
(4)	Heaviest & Highest O.S.	Os
(5)	Hardest element	W
(6)	Metalloids	B, Si, As, Te
(7)	Lowest electronegativity	Cs
(8)	Highest electronegativity	F
(9)	Highest ∆iH	Не
(10)	Lowest ∆iH	Cs
(11)	Highest ∆egH	Cl
(12)	Highest electronegativity	F
(13)	Strongest oxidising agest F	
(13)	Strongest Reducing agent	Li
(14)	Most reactive liquid metal	Cs
1		

M.C.Q.

1.	The most electronegat	tive element possess t	he electronic configura	ation
	a) ns ² np ²	b) $ns^2 np^4$	c) ns ² np ⁵	d) $ns^2 np^3$
2.	The maximum numbe	r of electrons in d- or	bital of an element with	h atomic number 46 is
	a) 10	b) 18	c) 20	d) 19
3.	The ionisation enthal [at mass of $Cs = 133$]			gy required to conver
	a) 7.512 J	b) 7.512 KJ	c) 7512.2 J	d) 18782 J
4.	The atomic number of the type of bond between		P are $x, x-1, x-3$. If P	is a halogen atom ther
	a) Covalent	b) Ionic	c) Coordinate	d) Metallic
5.	In the above question	(Question 4) the form	nula of M & P is	
	a) MP	b) M ₂ P	c) MP ₂	d) M_2P_3
6.	The elements X. Y. & The element which for			st orbital respectively
	a) X	b) Y	c) Z	d) None of the above
7.			h group. If the atomic nt which is violet solic	numbers are y, y-x l is
	a) C	b) A	c) B	d) D
8.	An element X belong	s to Gp16 & 5th period	l. Its atomic number is	>
	a) 34	b) 50	c) 52	d) 85
9.	The position of an ele	ment with atomic nun	nber 114 is	
	a) Period 6 gp 14	b) Period 6 gp 16	c) Period 5 gp 18	d) Period 7 gp 14
10.	The total no. of electrorespectively. The element			B, C, D are 2, 1, 4, & 6
	a) B	b) C	c) D	d) A
11.	The ionic radii of is respectively. The isoe	-		pm, 136pm & 140pm
	a) N^{3-} , O^{2-} , F^-	b) F^- , O^{2-} , N^{3-}	c) O^{2-} , N^{3-} , F^{-}	d) N^{3-} , F^- , O^{2-}
12.	The size of Mo is very	similar to W due to_		
	a) Shielding effect		b) Actinide contract	ion
	c) Poor Shielding by	4f electrons	d) Poor shielding by	4d electrons
13.	Choose the correct or	der ionization energy		
	a) $N > O > F$	b) $F > O > N$	c) $N > O < F$	d) $O > F > N$

14.	The order of ionization	n energy of K, Ca, &	Ba are	
	a) $K > Ca > Ba$	b) $Ca > Ba > K$	c) $Ba > K > Ca$	d) $K > Ba > Ca$
15.	The element with zero	electron gain enthalpy	y is	
	a) Argon	b) Lithium	c) Calcium	d) Fluorine
16.	Pick the iso electronic	species from the follo	owing	
	I. NH ₃		II. NH ⁻ ₂	
	III. CH ⁺ ₃		IV. H_3O^+	
	a) ii, iii, iv	b) i, ii, iv	c) i, ii, iii, iv	d) i & iv
17.	The element with atom	ic number 44 belongs	3	
	a) d-Block	b) p–Block	c) s-Block	d) f-Block
18.	In the third period ther	e are only eight elem	ents because	
	a) It is a short period		b) The 3d orbitals an	re absent
	c) The d orbitals are al	bsent		
	d) When n=3, the max	imum number of elec	trons which can be acc	commodated are eight
19.			n which has the high	est difference between
	first & second ionisation		2	
	a) $1s^2 2s^2 2p^6 3s^2 3p^6$	p ⁶ 4s ¹	b) 1s ² 2s ² 2p ⁶ 3s ² d) 1s ² 2s ² 2p ³	$3p^6$ $4s^2$
	c) $1s^2 2s^2 2p^4$			
20.		mbers for unpaired e	lectron of an element	with atomic number 84
	are a) $N=6$, $l=1$, $m=+1$	$1 m = \pm 1/2$	b) N= 5 , 1 = 3 , m =	$-0 m - \pm 1/2$
		1000	d) $N = 6$, $l = 3$, $m = 1$	5
2.1	c) $N=6$, $l=0$, $m=0$			-2 , $\mathrm{III}_{\mathrm{s}}$ $-1/2$
21.	The elements with high a) Alkaline earth metal			
	c) Noble gases	S	b) Halogensd) Lanthanides	
22		iah is nat isaalaatran	,	
22.	Choose the species what a) Bo ₃ ³⁻			d) So 2-
23.	The formation of Mg^{2+}	b) Co_3^{2-}	c) No ₃ ⁻	d) So ₃ ²⁻
23.			1 –1	
	I. $Mg_{(g)} \rightarrow Mg^+_{(g)} + g$			
	II. $Mg^+_{(g)} \rightarrow Mg^{2+}_{(g)} +$			
	The energy required in			ra than Ma
	a) Mg ⁺ is more electrop	•	b) Mg ⁺ has larger siz d) Mg ⁺ has smaller s	•
	c) Mg ⁺ tends to loose of	only one election	a) wig has smaller s	ize man ivig

24.		•	of gallium are 579KJn test Ga ³⁺ is the most sta	nol-1 ,1979KJmol-1 & able because		
	a) The energy loss is m	naximum resulting gre	eater stability			
	b) The size of Ga ³⁺ is s	smallest				
	c) Ga ³⁺ is most reactive	ve				
	d) It attains a stable co	onfiguration				
25.	The electronic configu	ration of M ³⁺ is [Kr] 4d ¹⁰ Its position in the	ne periodic table is		
	a) Period 4 gp 8	b) Period 5 gp 13	c) Period 4 gp 18	d) Period 5 gp 16		
26.	The electronic which w	vill exhibit maximum i	no. of oxidation states			
	a) $1s^2$ $2s^2$ $2p^6$ $3s^2$ 3	p ⁵	b) 1s ² 2s ² 2p ⁶ 3s ²	$3p^6 4s^2 3d^5$		
	c) [Xe] 4f ¹⁴ 5d ⁶ 6s ²		d) [Ar] 4s ² 4p ⁴			
27.	Choose the incorrect of	order w.r.t properly in	ndicated			
	a) Electro negativity	F > C1 > Br	b) Electron affinity	Cl > F > Br		
	c) Oxidizing power	$F_2 > Cl_2 > Br_2$	d) Bond enthalpy F	$l_2 > Cl_2 > Br_2$		
28.	Choose the correct sta	atement				
	a) As shielding effect increases electro negativity decreases					
	b) As shielding effect	increases electro nega	tivity increases	>		
	c) As ionization poten	tial increases metallic	property increases			
	d) As +ve charge on s	pecies increases ionic	radii increases	_		
29.	The electronic configu	ration which contain	metals, non metals & n	netalloid is		
	a) ns^1 & ns^2	b) ns^2 , $ns^{2(n-1)d}$ (1-1)	0)			
	c) ns ² np ⁶ & ns	d) $ns^2 np^4 \& ns^2$	np ⁵			
30.	The group in which all	l the three physical st	ates (solid ,liquid, gas)	are observed is		
	a) gp 17	b) gp 14	c) gp 18	d) gp 15		
31.	The element which exh	nibits highest oxidation	n number is			
	a) Mn	b) Os	c) Fr	d) I		
32.		A is high reactive s	olid & used to prepar	ly reactive gas, B is a re Lasagne's solution.		
	a) 12, 18, 9, 11	b) 11, 36, 9, 20	c) 20, 36, 11, 9	d) 9, 18, 11, 20		
33.	The element with high	est electronic affinity	belongs to			
	a) Period 1 gp	b) Period 3 gp 17	c) Period 2 gp 17	d) Period 2 gp 16		
34.	The atomic no. of B =	atomic of A+18, Sta	atements A & B to			
	a) Same pd & same gp)	b) Same pd but diffe	erent gp		
	c) Different pd but sar	ne gp	d) Different pd and o	different gp		
		/ '	•			

35.	Element B occupies 3 rd	pd & gp 16				
	Element C occupies 4 J	pd & gp 3				
	The molecular formula	of compound formed	between B & C is			
	a) B ₃ C ₂	b) C_2B_3	c) CB ₂	d) B ₂ C		
36.	Choose the correct stat	ement w.r.t oxidising	property of F			
	a) It is the strongest ox	idising agent because	it has highest electron	gain enthalpy		
	b) It is the strongest ox	idising agent due to it	ts small size			
	c) It is the strongest oxid	idising agent because	it has maximum electr	on negativity		
	d) It is the strongest ox	aidising agent due to	high lattice enthalpy			
37.	The name of the sciennameis—	ntist who discovered	d the element Unu &	t its accepted IUPAC		
	a) Mendeleev & Mendel	inium	b) Seaborg & Seabor	gium		
	c) Mendeleev & Dubiniu	m	d) G.T.Seaborg & M	endelinium		
38. V	Which of the following p	roperty does not indi	cate the periodicity of	elements		
	a) Ionization potential	- 1	b) Neutron/ proton R	Ratio		
	c) Bonding behaviour	N-1	d) Electron negativity	7		
39.	Properties of Li are sim	nilar to Mg because	ushio	>		
	a) The size of Li & Mg	are different	b) The size by charge	e ratio is similar		
	c) The charges are sam	e	d) Both are reactive	>		
40.	From the given set of					
	element which is a not below	n metal. The set of Q	Quantum numbers of A	A, B, C & D are given		
	A - n = 2, 1 = 1, m = 1	= 0 +_1	B - n = 4, l = 0, r	n = 0		
	C - n = 5, 1 = 2, m =		D - n = 6, l = 3, m = 0			
	a) D	b) C	c) B	d) A		
41.	Be shows diagonal relat	,	,	,		
	a) Mg	b) Al	c) B	d) Na		
42.	Which of the following	,	,	,		
	a) Na ⁺	b) Ca ⁺²	c) Cl ⁻	d) K ⁺		
43.	The ionisation potentia	l of N > O because				
	a) Ionisation potential i	ncreases with decrea	se in size			
	b) N posses stable half	filled p-orbital				
	c) The screening effect	in $N > O$				
	d) O is more electropos	sitive than N				
	•					

44.	The	physical properties	s of chromium is most	t closely related to	
	a) N	Niobium	b) Tungsten	c) Titanium	d) Calcium
45.	The	electronic configur	ration of an element of	f chalcogen family is	
	a) [$[Ar] 3d^{10} 4s^2 4p^1$		b) [Ar] 3d ¹⁰ 4s ² 4p ⁴	
	c) [$[Ar] 3d^{10} 4s^2 4p^{3n}$		d) [Ar] $3d^{10} 4s^2 4p^2$	
46.	Cho	oose the incorrect st	tatement		
	a)	An element with h	igh electronegativity a	nlways has high electro	n affinity
	b)	Electron gain enth	alpy is the property o	of an isolated atom	
	c)	Electronegativity	is the property of a bo	onded atom	
	d)		ivity & electron affini ortional to atomic size	ty are equally proport	ional to nuclear charge
47.	Cho	oose the oxide which	ch is most basic CuO	, MgO, Al ₂ O ₃ & K ₂ O	
	a) l	K ₂ O	b) MgO	c) CuO	d) Al ₂ O ₃
48.		element with aton nic number is	nic number 19 will r	nost readily react wi	th the element whose
	a) 1	18	b) 21	c) 20	d) 17
49.		raph is drawn betw following statement		y & atomic number t	from 1 to 60, which of
	a) A	Alkali me <mark>tals are at t</mark>	he maxima & noble g	ases at the minimum	
	b) A	Alkali metals are at t	the minimum & noble	gases at the maxima	>
	c) T	Transition elements	at maxima		
	d) N	Maxima & minima a	are not observed		
50.	In a	period with increase	se in atomic number,	the metallic character	of an element
	a) I	Decrease across pd	& increases in gp		
	b)	increase across pd	& decreases in gp		
	c) i	ncrease across pd &	& increases in gp		
	d) I	Decrease across pd	& decreases in gp		
51. 1	In el		_	[Ar] 4s ¹ will combinable ionic solid with hi	e with an element of gh melting point
	a) [$Ar]4s^2$	b) $[Ne]3s^2 3p^3$	c) [Ne] 3s ² 3p ⁵	d) [Ar] $4s^23d^2$
52.	In g	group 14 the lower	oxidation state becon	nes more stable down	the group. The reason
	a) I	nert pair effect		b) Decreases in ionis	ation potential
	c) N	Metallic character in	ncreases	d) Decrease in electr	on affinity

53.	Cho	oose the correct o	ption. Hint T=true F	= False						
	I.	In the second pe	riod atomic radii of	Be is 90pm, F is 64	pm, & that of Ne is 160pm					
	II.	Atomic radii dec	reases from Li to Ne							
	III.	The increase in spresence of cova	-	presence of vander	rwaals force of attraction &					
	IV.	In Ne there is ab	sence of covalent bo	nd therefore the ra	dii is vanderwaals radii					
	V.	The order of radi	ii is Metallic > Coval	ent > Vanderwaals	k					
	a) T	TFTF	b) TTTFF	c) TFFTT	d) TFFFT					
54.	Choose correct option									
	I.	Ionisation enth	nalpy ∞ 1/shielding o	effect						
	II.									
	III.	Ionisation enth	nalpy ∞ 1/Metallic c	haracter						
	IV.	Ionisation enth	nalpy ∞ Effective nu	clear charge						
	a) T	TFFT	b) FFTT	c) TTTF	d) TFTT					
55.	Cho	Choose the correct option								
	I.	C < N < F	C Second ionisati	on potential						
	II.	II. $d^5 < p^3$; $d^{10} < p^6$ Half filled order of stability & fully filled orbital's								
	III.	$Al_2O_3 < SiO_2$	$< P_2O_3 < SO_2 Acid$	strength						
	IV.	$M^{3+} > M^{2+} > M$	> M ²⁻ Atomic/Ionic	radii						
	a) T	FTT	b) TTTF	c) TTFT	d) TTTT					
56.	Cho	oose the correct of	ption							
	I.	Cs ⁺ is the mos	t hydrated than other	alkali metal						
	II.	Among the alka	ali metals, Li has the	highest M.P						
	III.	Li is the strong	est reducing agent be	cause of low ionisa	ation enthalpy					
	IV.		ngest reducing age y high hydration enth		igh ionisation potential is					
	V.	Li is resemble t	o Al							
	a) F	TFTF	b) TTFTF	c) FFFTF	d) TTTFF					
57.	Cho	oose the correct of	ption							
	I.	NaCl < NaI <	NaF < NaBr Ior	nic character						
	II.	Si < P < C <	< N Electronegativ	vity						
	III.	$BeCl_2 < MgC$	$l_2 < CaCl_2 < BaCl_2$	Ionic character						
	IV.	$Al^{3+} < Mg^{2+} <$	Na ⁺ Ionic mobility							
	a) F	TTF	b) TFFT	c) FTTT	d) FFTT					

58.	. Choose the correct option									
	I.	Transition metals	are characterised by	variable oxidation sta	te					
II. Elements of IB & IIB are transition elementsIII. Elements of gp1 exhibit only +1 O.S										
	III.	III. Elements of gp1 exhibit only +1 O.SIV. Group 17 contains only gases								
	IV.	Group 17 contain	ns only gases							
	a) T	ΓFF	b) TFTF	c) TTTF	d) TTTT					
59.	Choo	ose the correct opt	ion							
	I.	The ionisation en	thalpy of Be > B							
	II.	d-Block element	s are known as repres	sentative elements						
	III.	Palladium is the level	only element of fifth	n period that has no e	lectron in fifth energy					
	IV.	The second ionis	ation enthalpy of Al i	s greater than that of I	Mg					
	V.	Among Li, Be, B	,C N; Li has least va	alue of electron gain e	nthalpy					
	a) TF	FTFT	b) TFFTT	c) TFFFT	d) TFTTT					
60.	Choo	ose the correct opt	ion							
	I.	The last electron	in case of inner trans	ition elements goes to	f-orbital					
	II.	The electron affin	ity is highest for fluor	rine	>					
	III.	Metallic radius is	smaller than covalen	t radii						
	IV.	Ar has lesser ion	isation enthalpy than	K	>					
	a) TI	FFT	b) TFFF	c) TTTF	d) TTFF					
61.	Choo	ose the correct opt	ion							
	I.	All halogens exh	ibit variable oxidation	state						
	II.	s-Block element	s do not exhibit varia	ble oxidation state						
	III.	the most stable o	xidation state of Bi is	3 +3						
	IV.	N exhibits -3 , $+3$	3 & +5 oxidation sta	ate						
	a) TI	FTT	b) TFFT	c) FTTT	d) FTTF					
62.	Choo	ose the correct opt	ion							
	I.	O.S of 'O' in OF	F_2 is -2							
	II.	Ionisation enthalp from an atom	by is the minimum am	ount of energy require	d to remove an electron					
	III.	Screening effect	: it is the attraction of	electron towards the	nuclear					
	IV.	Half filled orbital	s are more stable half	fully filled orbitals						
	a) T	ГТТ	b) FFFF	c) TTFT	d) TFFT					

Match the following

63. Set A

- 1. Strongest reductant
- 2. Fully filled d-orbital
- 3. Noble metal
- 4. Actinide

Set B

- p) silver
- q) Berkelium
- r) Copper
- s) Iodide ion
- t) Sodium ion
- a) 1-s, 2-r, 3-p, 4-q b) 1-t, 2-r, 3-p, 4-q c) 1-s, 2-t, 3-q, 4-p d) 1-t, 2-s, 3-q, 4-p

64. Set A

- 1. Liquid non metal
- 2. Metal stored in paraffin
- 3. Most electropositive metal
- 4. Strongest alkali

Set B

- p) Lightest metal
- q) Cs
- r) KOH
- s) K
- t) group 17
- u) CsOH
- b) 1-t, 2-p, 3-s, 4-r
- d) 1-t, 2-p, 3-q, 4-u
- Set B
- I) Basic oxide
- K) neutral oxide
- L) Amphoteric oxide
- M) acidic oxide
- O) Neutral
- b) 1, 2 & 5– M, 3–J, 4–L
- d) 1-J, 2 & 5-M, 3-K, 4-L

Set B

- p) Hardest metal electric
- q) poor conductor of current
- r) largest size
- s) most reactive solid matter
- t) highest oxidation state
- b) 1-t, 2-q, 3-p, 4-r
- d) 1-t, 2-q, 3-s, 4-r

a) 1-s, 2-q,

65. Set A

- 1. CO
- 2. CO,
- 3. K,O
- 4. Al₂O₃
- 5. SiO,
- a) 1-K, 2 & 5-M, 3-J, 4-L
- c) 1-K, 2-M, 3-L, 4-J

66. Set A

- 1. Osmium
- 2. Lead
- 3. Tungsten
- 4. Caesium
- a) 1-t, 2-q, 3-p, 4-s
- c) 1-t, 2-s, 3-q, 4-t

67. Set A

- 1. Diagonal relationship
- 2. Shielding effect
- 3. Effective nuclear charge

q)attraction towards nucleus

Set B

- r) charge on the nucleus available for other electrons
- s) similar polarising power
- t) Ionisation enthalpy decreases
- a) 1-s, 2-t, 3-r
- b) 1-t, 2-s, 3-r
- c) 1-r, 2-s, 3-t d) 1-s, 2-r, 3-t

68. Set A

- 1. Br
- 2. Ba
- 3. Se
- 4. Rb
- a) 1-p, 2-r, 3-s, 4-q
- c) 1-s, 2-r, 3-q, 4-p

69. Set A

- 1. Hg
- 2. Carbon (Diamond)
- 3. Bromine
- 4. Caesium & F
- a) 1-s, 2-r, 3-p, 4-q
- c) 1-s, 2-t, 3-p, 4-q

70. Set A

- 1. Inner transition elements
- 2. Transition
- 3. Typical element
- 4. Representative element
- a) 1-r, 2-s, 3-p, 4-q
- c) 1-q, 2-r, 3-s, 4-t

71. Set A

- 1. Be < A1
- 2. Aufbau principle
- 3. $ns^2 np^{1-5}$
- 4. ns^2np^6
- a) 1-r, 2-s, 3-q, 4-p
- c) 1-q, 2-r, 3-q, 4-p

Set B

- p) Chalcogen
- q) alkali metal
- r) alkaline earth metal
- s) Halogen
- b) 1-s, 2-r, 3-p, 4-q
- d) 1-s, 2-p, 3-r, 4-q

Set B

- p) Liquid non-metal
- q) reacts very violently
- r) reaction endothermic
- s) Liquid metal
- t) extremely high M.P
- b) 1-t, 2-s, 3-p, 4-r
- d) 1-s, 2-t, 3-p, 4-r
- Set B
- p) 3rd period
- q) s & p Block
- r) d-Block
- s) f-Block
- t) p-Block
- b) 1-s, 2-r, 3-p, 4-q
- d) 1-s, 2-r, 3-t, 4-q
- p) noble gases
- q) p-Block
- r) Diagonal relationship
- s) Block deciding rule
- b) 1-s, 2-r, 3-p, 4-q
- d) 1-r, 2-q, 3-s, 4-p

- 72. Set A (Atomic no.)
 - 1. 100
 - 2. 50
 - 3. 40
 - 4. 11
 - a) 1-t, 2-s, 3-p, 4-q
 - c) 1-t, 2-p, 3-s, 4-q

- Set B (Position of element)
- p) d-Block
- q) s-Block
- r) lanthanides
- s) Actinides
- b) 1-r, 2-s, 3-p, 4-q
- d) 1-r, 2-s, 3-q, 4-p
- 73. The position of element A, B, C & D are

Element	Period	Group
A	4	2
В	3	13
C	3	16
D	4	16

- 74. The molecular formula of the oxide of each element in its highest state are
 - a) AO₂, B₃O₂ CO, DO

b) AO, B,O,, CO, DO

c) A₂O₃, B₂O₃, CO₂, DO₃

- d) AO, B₂O₃, CO₃, DO₃
- 75. With reference of above question the oxide which is (i) most ionic (ii) amphoteric (iii) highest M.P (iv) reacts most readily acid only
 - a) AO,BO,AO,AO

b) AO,CO,BO,AO

c) BO, AO, AO, DO

d) DO, AO, BO, CO

Assertion reason type

75-85 are assertion reason type for each question select the correct choice from the following

- a) Statement 1 is true, statement 2 is true & is correct explanation for statement 1
- b) Statement 1 is true, statement 2 is true but is not correct explanation for statement 1
- c) Statement 1 is true, statement 2 is false
- d) Statement 1 is false, statement 2 is true

75.

- 1. F atom has lesser electron affinity than atom
- 2. The size of F is very small therefore electron electron repulsion is high

76.

- 1. The size of $X^+, X & O^-$ are identical
- 2. The removal of electron decreases the size while addition of e⁻ increases the size. This is primarily due to decreases increases in electronic repulsion

77.

- 1. In group 14 +2 oxidation state of Pb is more stable than +4 oxidation state
- 2. The size of atom increase from carbon to Lead

78.

- 1. The electro negativity of Ne is 1.6
- 2. Ne belongs to group 18

79.

- 1. The solubility of sulphates of alkaline earth metals in water decreases down the group
- 2. Lattice enthalpy decreases with increases atomic size but hydration enthalpy of Na⁺² ion decreases in group 2

80.

- 1. There are 14 elements in the lanthanide series and 14 elements in the actinide series
- 2. All the elements of actinide series are radioactive.

81.

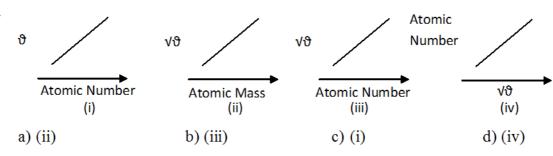
- 1. The ionisation enthalpy of Be is lesser than B
- 2. Ionisation enthalpy normally decreases down the group

82.

- 1. Transition element exhibits variable oxidation states.
- 2. Electronic configuration of transition elements is ns²⁽ⁿ⁻¹⁾¹⁰

83.

- 1. The boiling point of hydrogen compounds of group 16 is into the order of $\rm H_2O > H_2S < H_2se < H_2Te$
- 2. The bond enthalpy between hydrogen and the element decreases down the group. $\rm H_2O$ exhibits H-bond

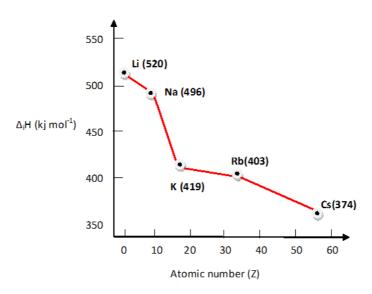

84.

- 1. F, is highly reactive
- 2. The bond enthalpy of F, is exceptionally high

85.

- 1. The d–Block elements are also known as transition elements
- 2. They form colored compounds and complexes.

86.


- 87. Z= 34 & Z=37. What is the other name elements are known on basis of given atomic number respective?
 - a) Representative, Halogen

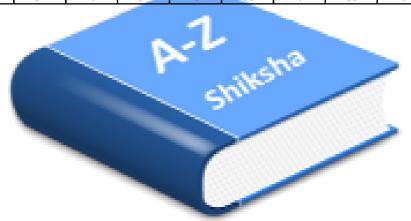
b) Tranter, Chalcogen

c) Halogen transition

d) Chalcogen & representative

88.

Relation between first ionization enthalpies of alkali metals elements and their atomic number Value of 1st ionization enthalpy of Be will be_____


- a) Below Cs
- b) Between Li & Na
- c) Above Li
- d) Below Li but above K
- 89. The Correct decreasing order of atomic size among the following species is:
 - a) $Ca^{2+} > K^{+} > Ar > Cl^{-} > S^{2-}$
- b) $K^+ > Ca^{2+} > Cl^- > Ar > S^{2-}$
- c) $S^{2-} > Cl^{-} > Ar > K^{+} > Ca^{2+}$
- d) $S^{2-} > Ar > Cl^{-} > Ca^{2+} > K^{+}$
- 90. Arrange Ce³⁺, La³⁺, Pm³⁺ and Yb³⁺ in increasing order of their size:
 - a) $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$
- b) $Ce^{3+} < Yb^{3+} < Pm^{3+} < La^{3+}$
- c) $Yb^{3+} < Pm^{3+} < La^{3+} < Ce^{3+}$
- d) $Pm^{3+} < La^{3+} < Ce^{3+} < Yb^{3+}$
- 91. Which of the following reaction require maximum energy.
 - a) $F \rightarrow F^-$
- b) $H \rightarrow H^-$
- c) $Cl \rightarrow Cl^{-}$
- d) $O \rightarrow O^{2-}$
- 92. Given below is the E.C. Which of the following is not the correct E.C.
 - a) [Xe] 6s¹
- b) [Xe] $4f^{14} 5d^1 6s^2$
- c) [Ar] $3d^{10} 4s^2 4p^5$
- d) [Ar] $3d^74s^2$
- 93. The electro negativity of the following elements increases in order of:
 - a) C, N, Si, P
- b) N, Si, C, P
- c) Si, P, C, N
- d) P, Si, N, C
- 94. The electronic configuration of element A is 1s²,2s², 2p⁶3s² while that of element B is1s²,2s² 2p⁵. The formula of the compound is:
 - a) AB
- b) A₂B
- c) AB,
- d) A_2B_6

_								
95.	Choose the op	otion in whi	ch the order is not	t in accordance to the pr	roperty indicated.			
	(a) $Al^{3+} \langle Mg^{2+} \rangle$	$\langle Na^+ \langle F^- \rangle$	(Increasing ion	ic size)				
96	(b) $B\langle C\langle N\langle O$		(Increasing firs	(Increasing first ionisation enthalpy)				
	(c) I\langle Br\langle F\langle C1		(Incresing nega	ative electron gain entha	lpy)			
	(d) Li(Na(K(Rb	(Increasing me	tallic radius)				
96.	Choose the w							
	(a) NH ₃ ⟨PH ₃ ⟨	A ₅ H ₃ (Acid	ic)					
	(b) Li⟨Be⟨B⟨C	5 5 1	,					
	(c) Al ₂ O ₃ (Mg		(Racio)					
	2 3 . 0		- '					
07	(d) $\text{Li}^+\langle \text{Na}^+\langle$			\neg				
97.	Element		in perodic table	oup				
	A	3	2	ущр				
	В	7	10					
	C	2	16	-Ma				
	D	5	13	hiks.				
					8.			
		nic number						
	A) 104		B) 108	C) 110	D) 105			
				rm between A & C is				
	, -	hide and ba		B) Oxide and amphoteric				
	, 1	hide and ne	utral	cral D) Oxide and basic				
	III. Element		D) Matallaid	C) Non-motal	D) Linuid			
	A) Meta		B) Metalloid	C) Non-metal	D) Liquid			
98.	(a) 1-B, 2-C,		nts are given belo	(c) 1-C, 2-D, 3-B	(d) 1-A, 2-D, 3-A			
70.	Element	Prope	C					
	В	_	d and forms stron	gest alkali				
	С	•	metal and shining					
	D		C	st with exceptional elec	etronic configuration			
	I. The eler	nent B is	•	•	J			
	A) Cs		B) Ga	C) Fr	D) Na			

	II.	the element D is			
		A) Pt	B) Ni	C) Pd	D) Mo
	III.	The element C is	•	,	•
		A) Br	B) I	C) Ga	D) Carbon
	(a) 1	-A, 2-D, 3-B	(b) 1-D, 2-A, 3-C	(c) 1-A, 2-D, 3-A	(d) 1-A, 2-C, 3-B
99.			ng atomic number 7,1		
	I.			ements in which EX ₃	(X=Helogen) is mo
		A) 15 & 33	B) 33 & 51	C) 51	D) 83
	II.	The atomic numb	er of the element whi	c form more than two	oxides
		A) 7	B) 33	C) 15	D) 53
	III.		ŕ	ch is store under the w	
		A) 15	B) 33	C) 51	D) 83
	(a) 1		,	(c) 1-C, 2-D, 3-B	•
100			y and answered the foll		(a) 1 D, 2 11, 3 11
100.		_	•	ons to shield the outer to	
100.	nucle	_	•	nt ó can be calculated by	
	nucle	ear force of attaration	on the shielding constan	nt ó can be calculated by	
	nucle	ear force of attaration	on the shielding constant $Z^* = \text{effective nuclear}$	nt ó can be calculated by r charge	
	nucle Z* =	ear force of attaration $z = Z - \sigma$ where	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$	nt ó can be calculated by r charge nt	
	nucle Z* = The : Ele	ear force of attaration $Z - \sigma$ where rules according to sleetrons in the	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant $\sigma = \text{Shielding constant}$	t ó can be calculated by charge tt the table σ per electron of orbit	the equation:
	nucle Z* = The : Ele	ear force of attaration $Z - \sigma$ where rules according to sleetrons in the pitals of shells	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant $\sigma = \text{Shielding constant}$	t ó can be calculated by r charge tt the table	the equation: (n-2), n-3 etc
	nucle Z* = The : Ele	ear force of attaration $Z - \sigma$ where rules according to sleetrons in the	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant $\sigma = \text{Shielding constant}$	t ó can be calculated by charge tt the table σ per electron of orbit	the equation:
	nucle Z* = The : Ele	ear force of attaration $Z - \sigma$ where rules according to sleptons in the pitals of shells s or p orbital	on the shielding constant Z^* = effective nuclear Z = Nuclear charge σ = Shielding constant eter are given below in the following of the shielding constant σ = 0.35	the table or per electron of orbit n-1 0.85	(n-2), n-3 etc
	The:	ear force of attaration $z = Z - \sigma$ where rules according to sleptons in the pitals of shells sor p orbital d or f orbital	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant of the shielding co	the table or per electron of orbit n-1 0.85	(n-2), n-3 etc 1.0 1.0
	The Eleorb	ear force of attaration Z – σ where rules according to sle ectrons in the pitals of shells s or p orbital d or f orbital electrons of an aton	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant of the shielding co	the table or per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4)	(n-2), n-3 etc 1.0 1.0
	The Eleorb	ear force of attaration $Z - \sigma$ where rules according to sleptons in the pitals of shells $S - \sigma$ or porbital $S - \sigma$ do not a sor porbital dor forbital electrons of an atom trons on the right controls.	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant and the shielding constant and the shielding constant are given below in the shielding constant and the shielding constant are given below in the shielding constant are	the table or per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4) nielding constant	(n-2), n-3 etc 1.0 1.0
	The Elect	ear force of attaration $Z - \sigma$ where rules according to sleptons in the pitals of shells $S - \sigma$ or porbital $S - \sigma$ do not a sor porbital dor forbital electrons of an atom trons on the right controls.	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the shielding constant and the shielding constant and the shielding constant are classified as (1s), attribute nothing to the shielding constant are classified as (1s), attribute nothing to the shielding constant are classified as (1s),	the table or per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4) nielding constant	(n-2), n-3 etc 1.0 1.0
	The Elect	ear force of attaration Z – σ where rules according to sle ectrons in the pitals of shells s or p orbital d or f orbital electrons of an atom trons on the right con The shielding cons A) 3.10	on the shielding constant Z^* = effective nuclear Z = Nuclear charge σ = Shielding constant eter are given below in the shielding constant $\frac{n}{0.35}$ 0.35 are classified as (1s), attribute nothing to the shielding constant for an p-electron of	the table or per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4) nielding constant f -7N is C) 2.45	(n-2), n-3 etc 1.0 1.0 4s,4p,4d), (4f)
	The Elect I.	ear force of attaration Z – σ where rules according to sle ectrons in the pitals of shells s or p orbital d or f orbital electrons of an atom trons on the right con The shielding cons A) 3.10	on the shielding constant $Z^* = \text{effective nuclear}$ $Z = \text{Nuclear charge}$ $\sigma = \text{Shielding constant}$ eter are given below in the ship of the ship of the shift of t	the table or per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4) nielding constant f -7N is C) 2.45	(n-2), n-3 etc 1.0 1.0 4s,4p,4d), (4f)
	The Elect I.	ear force of attaration	on the shielding constant $Z^* =$ effective nuclear $Z =$ Nuclear charge $\sigma =$ Shielding constant eter are given below in the shifteness of the shifteness	to can be calculated by a charge to the table so per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4s) nielding constant f-7N is C) 2.45 30Zn is C) 21.85	(n-2), n-3 etc 1.0 1.0 4s,4p,4d), (4f)
	The Elect I.	ear force of attaration	on the shielding constant $Z^* =$ effective nuclear $Z =$ Nuclear charge $\sigma =$ Shielding constant eter are given below in the eter are given below in the eter are classified as (1s), attribute nothing to the shiftent for an p-electron of B) 3.45 tant for a 3d electron of B) 20.8	to can be calculated by a charge to the table so per electron of orbit n-1 0.85 1.00 (2s 2p), (3s,3p), (3d), (4s) nielding constant f-7N is C) 2.45 30Zn is C) 21.85	(n-2), n-3 etc 1.0 1.0 4s,4p,4d), (4f)

ANSWER KEY

1	С	18	b	35	b	52	а	69	С	86	b
2	С	19	а	36	С	53	а	70	b	87	d
3	а	20	а	37	d	54	d	71	а	88	С
4	b	21	С	38	b	55	b	72	а	89	С
5	С	22	d	39	b	56	а	73	d	90	а
6	а	23	d	40	d	57	С	74	а	91	d
7	а	24	d	41	b	58	С	75	а	92	b
8	С	25	b	42	a	59	d	76	d	93	С
9	d	26	С	43	b	60	b	77	b	94	С
10	b	27	d	44	С	61	С	78	d	95	b
11	d	28	а	45	b	62	b	79	а	96	b
12	С	29	d	46	а	63	а	80	b	97	С
13	С	30	а	47	a	64	d	81	d	98	d
14	b	31	b	48	d	65	а	82	b	99	а
15	а	32	С	49	b	66	b	83	а	100	С
16	b	33	b	50	а	67	а	84	С		
17	а	34	С	51	С	68	b	85	b		

